Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus
نویسندگان
چکیده
Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.
منابع مشابه
Influence of Carbon Source on Cellulase Activity of White-rot and Brown-rot Fungi
Three white-rot fungi, Polyporus versicolor, Ganoderma applanatum, and Peniopbora “G,” produce an adaptive cellulase complex that can degrade both soluble cellulose (Cx) and microcrystalline cellulose (C1), a highly ordered form of cellulose. Production of Cx and C1 by the white-rot fungi was repressed by simple sugars. Cellualase preparations from three brown-rot fungi, Poria monticola, Lentin...
متن کاملEnzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation.
This research aims at developing a biorefinery platform to convert lignocellulosic corn fiber into fermentable sugars at a moderate temperature (37 °C) with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum), and soft-rot (Trichoderma reesei) fungi were used for in situ enzyme production to hydrolyze cellulosic and hemicellulosic components of co...
متن کاملKey Pretreatment Technologies on Cellulosic Ethanol Production
Conversion of lignocellulosic biomass to fuel ethanol involves pretreatments followed by enzyme-catalyzed hydrolysis to generate fermentable sugars. Efficient pretreatment method can significantly enhance hydrolysis of biomass and thus reduce ethanol production cost. Cellulosic plant materials are mainly composed of cellulose, hemicellulose and lignin, the cheapest source of fermentable sugars....
متن کاملProcess Development for Ethanol Production based on Enzymatic Hydrolysis of Cellulosic Biomass
The utilization of biomass to provide a source of liquid fuels, such as ethanol, requires the conversion of al l available sugars to ethanol. This paper deals with the various physical and chemical pretreatments employed for the treatment of cellulosic materials, and then describes the production of cellulase in batch and continuous systems. This enzyme (cellulase), when contacted with pretreat...
متن کاملUse of Ionic Liquids for Improvement of Cellulosic Ethanol Production
Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol...
متن کامل